Laparoscopic Single Stage Vessel Sparing Orchiopexy

Ali Raza Brohi,¹* Naseem Mengal ¹

ABSTRACT

Objective
To find out effectiveness of primary laparoscopic orchiopexy and single stage vessel sparing technique for intra-abdominal testis.

Study design
Retrospective study.

Place & Duration of study
Department of Paediatric Surgery Peoples University of Medical & Health Sciences Nawabshah, from September 2011 to September 2015.

Methodology
After approval from hospital ethical committee, data of patients with undescended non-palpable testes were reviewed. Ultrasonography was done in all cases. Variables analyzed included patients' age, laterality of testis, laparoscopic findings and postoperative complications.

Results
Data of 100 patients was reviewed. There were 110 undescended impalpable testicles (UIT). Age ranged from infancy to 12 year. Most (80%) of the patients were between 1-5 year of age. Fifty-five patients had right sided impalpable testis, 35 left sided and 10 patients had bilateral UIT. Laparoscopy was performed in all. At endoscopy 78 testicles were intra-abdominal in position. In these patients single stage vessel sparing orchiopexy was done. Orchiectomy was performed in five patients due to impression of being atrophic. Laparoscopy revealed 10 canalicular testis. In these patient inguinal explorations was done and orchiopexy performed.

Conclusions
Laparoscopic single stage vessel sparing technique was safe and orchiopexy was successfully performed. Testicular viability was noticed in 97.5% units.

Key words
Laparoscopy, Intra-abdominal testes, Single stage orchiopexy.

INTRODUCTION:
Non-palpable testis, although rare, remained a controversial subject and there is an ongoing debate with regards to investigations and accurate diagnosis. In 1976 Cortesi et al, were the first to introduce laparoscopy for evaluation of impalpable testis, which is now a gold standard modality for the management of intra-abdominal testis.¹

In 1991, Bloom reported laparoscopic Fowler-Stephens staged procedure.² Three years later Jordan et al reported single stage laparoscopic assisted orchiopexy.³ This is an era of minimal invasive surgery. New techniques are being introduced and refinements made in the management of non-palpable testis. Aim of this study was to find out if primary laparoscopic orchiopexy or single stage vessel sparing technique was effective and feasible for intra-abdominal testis.

METHODOLOGY:
This was a retrospective study which was conducted in the Department of Paediatric Surgery Peoples University of Medical & Health Sciences Nawabshah, from September 2011 to September 2015. After approval from hospital ethical committee, data of patients with non-palpable testes were...
reviewed. Ultrasonography was done in all cases for localization of testis. Data was collected on age of the patient, laterality of testis, laparoscopic findings and postoperative complications.

All patients were operated under general anesthesia in supine position with slight Trendelenberg’s tilt. Urinary bladder was emptied by Foley catheter. Few patients were given micro enema to evacuate bowel before surgery. First port was introduced through umbilicus (5 mm, 0° camera) by open technique. Two 3 mm working ports were placed in right and left lower abdomen in mid-clavicular line. Carbon dioxide was insufflated at 10-12 mmHg pressure and flow rate kept between 1-1.5 ml/min.

After introducing telescope, testis location, size, and distance from internal ring, length of spermatic vessels and any other associated problems were noted. Further steps were taken according to the findings at laparoscopy. Single stage vessel sparing laparoscopic orchiopexy was performed in intra-abdominal testicles including high intra abdominal testis (>2-3cm from internal inguinal ring). Peritoneum over the spermatic vessels was incised as high as possible. Similarly peritoneum over the vas deferens on medial and lateral side was dissected up to the base or underneath the urinary bladder, taking care not to damage it. By this technique, testicular vessels got length, which facilitated in bringing testis down to scrotum, without creating any new opening medial to epigastric vessels. (Fig I). All patients were followed in outpatient department at postoperative week 1, then monthly for 6 months and at one year. During follow-up, clinical examination and Doppler ultrasound were done to check position, size and blood flow to testis.

RESULTS:
A total of 100 patients were included in this study with 110 impalpable testicles. Age of the patients ranged from infancy to 12 years. Eighty patients were between 1-5 year of age. In 55 patients right testis was impalpable, 35 patients had left sided and 10 patients bilateral IUDT.

Laparoscopy performed in all cases. Details are given in Table I. In 78 testicles, laparoscopic single stage vessel-sparing orchiopexy was performed. Orchiectomy was done in 5 atrophic testicles. In 10 patients with canalicular testes, inguinal exploration was done.

Postoperative complications of high and low intra-abdominal testicles are given in Table II.

DISCUSSION:
Undescended testis is a common genitourinary problem seen in 1-3% male infants and 20% of them are non-palpable. Before advent of laparoscopy it was difficult to diagnose non-palpable testis (NPT). Laparoscopy is considered gold standard for diagnosing NPT.

Pediatric laparoscopy is fast growing in Pakistan. Initial experience of laparoscopy from Pakistan has been reported in literature by various surgeons. They shared their initial experience of laparoscopic orchiopexy for impalpable testis. Their experience was based upon Fowler Stephen approach. Our study aimed to preserve testicular vessels and perform one stage orchiopexy for intra-abdominal testis located 2-3 cm from internal inguinal ring.

In this study most of the patients were between 1-5 year of age. This may be due to lack of knowledge on part of referring physicians. Late referral may affect future fertility potential in these patients. Unilateral undescended testis is more
common than bilateral. In our study right side was involved more than left which has been reported in other series as well.\textsuperscript{10}

Our study showed superiority of laparoscopy in making diagnosis in patients with non-palpable testis as documented by others.\textsuperscript{6,11,12} Laparoscopy helped in identifying testis, localizing its position, size, distance from internal inguinal ring, vascular anatomy and contralateral testis. Surgical planning was also facilitated.\textsuperscript{13,14}

Laparoscopic Fowler Stephen technique, either single or stage procedure is commonly performed for intra-abdominal testis as testicular vessel length is a limiting factor.\textsuperscript{15-17} Proponents of staged Fowler Stephens procedure believe that neovascularization will develop maximally in six months of interval between two stages. Primary Fowler Stephen technique may increase the chance of vasospasm and testicular atrophy.\textsuperscript{18,19} Recently, few surgeons approached intra-abdominal testis without dividing vessel.\textsuperscript{20-22} Ostile et al in their study compared primary and staged Fowler Stephen technique and concluded that primary Fowler Stephen is more effective in terms of cost, and testicular survival.\textsuperscript{23} A multi-institutional analysis by Baker et al showed overall success rate of 97.2% in primary laparoscopic versus single stage and 2-stage Fowler Stephen technique (74.1%, 87.9%). They also reported that atrophy was more common in Fowler Stephen orchiopexy group either single or staged than primary laparoscopic orchiopexy (22.2%, 10.3% versus 2.2%) and in terms of testicular position; 0.6% of primary laparoscopy group had bad testicular position versus single / staged Fowler Stephen (7.4% / 1.7%). Within this series, single stage Fowler Stephen operation resulted in a high failure rate than two-stage Fowler Stephen orchiopaxy.\textsuperscript{24} In our study, only two patients had atrophy of testis and testicular position was good in 48 patients. In patients of high intra-abdominal testis, issue of testicular position were more common.

<table>
<thead>
<tr>
<th>Table I: Laparoscopic Findings and Procedures Done</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laparoscopic Findings</td>
</tr>
<tr>
<td>Intra-abdominal testis</td>
</tr>
<tr>
<td>High (&gt; 2cm – 3cm Internal Inguinal Ring)</td>
</tr>
<tr>
<td>Low (&lt; 2cm Internal Inguinal Ring)</td>
</tr>
<tr>
<td>Atrophic testis</td>
</tr>
<tr>
<td>Canalicular testis</td>
</tr>
<tr>
<td>Nubbin</td>
</tr>
<tr>
<td>Vanishing (blind ending vas and vessels)</td>
</tr>
<tr>
<td>Absent (no vas and vessels)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table II: Postoperative Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postoperative Complications</td>
</tr>
<tr>
<td>Scrotal Wound Infection</td>
</tr>
<tr>
<td>Hematoma</td>
</tr>
<tr>
<td>Testicular Position</td>
</tr>
<tr>
<td>High scrotal</td>
</tr>
<tr>
<td>Mid scrotal</td>
</tr>
<tr>
<td>Low scrotal</td>
</tr>
<tr>
<td>Atrophy *</td>
</tr>
</tbody>
</table>
CONCLUSIONS:
Laparoscopic single stage vessel sparing technique was safe. Testicular salvage was found in high number of cases.

REFERENCES:


